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Circulation-strain sum rule in stochastic magnetohydrodynamics
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We study probability density functions~PDFs! of the circulation of velocity and magnetic fields in magne-
tohydrodynamics, computed for a circular contour within inertial range scales. The analysis is based on the
instanton method as adapted to the Martin-Siggia-Rose field theory formalism. While in the viscous limit the
expected Gaussian behavior of fluctuations is indeed verified, the case of vanishing viscosity is not suitable of
a direct saddle-point treatment. To study the latter limit, we take into account fluctuations around quasistatic
background fields, which allows us to derive a sum rule relating PDFs of the circulation observables and the
rate of the strain tensor. A simple inspection of the sum rule definition leads straightforwardly to the algebraic
decayr(G);1/G2 at the circulation PDF tails.
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I. INTRODUCTION

Probability distribution functions~PDFs! of quantities that
‘‘measure’’ strong fluctuations in a turbulent fluid, such
velocity differences in Burgers model@1–4# or the circula-
tion in three-dimensional incompressible flows@5–7# are a
very promising tool in the study of the intermittency ph
nomenon. While velocity differences are related to the ex
tence of shock waves in the former case, the choice of
culation as an observable worth to be investigated
motivated by the appealing picture of turbulence in terms
the complex evolution of vorticity filaments, suggested
the first time through direct numerical simulations of t
Navier-Stokes equations@8#.

An early theoretical analysis of the circulation statist
by Migdal @5#, suggested, with the help of loop equatio
methods, and on the grounds of the central limit theore
that the PDF of the circulation, evaluated for a closed c
tour contained in the inertial range, should display Gauss
tails. This was not confirmed in direct numerical simulatio
where PDFs were seen to exhibit a stretched expone
decay@6#. A further study of the problem by Takakura an
one of us@7#, through the instanton approach@9#, was able to
reproduce observed results as well as to establish predic
concerning the role of parity breaking external conditio
which presently stand open for experimental verification.

Our aim here is to address similar questions in the pr
lem of turbulent magnetohydrodynamics, motivated by
fact that a deeper understanding of the subject has bee
order for sometime, in face of the impressive amount of d
recorded in astrophysical observations, as sunspots and
dynamo effect@10#. More specifically, we will study the sta
tistics of circulation of velocity and magnetic fields in th
laminar and turbulent regimes, by means of the Mart
Siggia-Rose formalism~MSR! @11#. The basic technica
framework is provided by the saddle-point method, wh
instantons and fluctuations around them are assume
yield, respectively, leading and subleading contributions
the behavior of PDFs tails.

This paper is organized as follows. In Sec. II, the ba
1063-651X/2002/65~3!/036302~8!/$20.00 65 0363
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elements of the formalism are set. We define the stocha
fluid equations in terms of the Elsasser variables~linear com-
binations of velocity and magnetic fields! from which the
MSR action and the associated saddle-point equations
obtained. In Sec. III, as a concrete introduction to the inst
ton technique, we discuss the simpler problem of fluctuati
in the viscous limit of the magnetohydrodynamical equ
tions, proving circulation is governed in this case by ex
Gaussian statistics, as expected on physical grounds. In
IV we consider the limit of vanishing viscosity. It is know
that a direct application of the saddle-point method is fa
to fail here, as implied from simple dimensional analys
@7,9#. We circumvent this problem through the strategy d
vised in Ref. @7#, which consists of ‘‘breaking’’ the path-
integration measure into fast and slow degrees of freed
related, respectively, to the vorticity and the rate of the str
tensor. The characterization of fast and slow variables is
basic physical assumption of our method, as motivated
the numerical experiments@6# performed in the case of pur
turbulence. The outcome of our computations will be jus
sum rule relating the statistics of circulation observables
the rate of the strain tensor. We find then asymptotic exp
sions for the tails of the circulation PDFs, given by the alg
braic decay 1/G2 ~the same for velocity and magnetic circu
lation!, a result that indicates the existence of stro
intermittency effects in turbulent magnetohydrodynamics.
Sec. V, we summarize our findings and discuss direction
further research.

II. MSR FORMALISM AND THE SADDLE-POINT
EQUATIONS

Consider a three-dimensional fluid described by veloc
and magnetic fields,va(xW ,t) and ba(xW ,t), respectively,
which is stirred by large scale stochastic forces. It is poss
to choose physical units so that velocity and magnetic fie
have the same dimensions, and magnetohydrodynam
equations are written in terms of Elsasser variablesza

6

5(va6ba) @12#, as
©2002 The American Physical Society02-1
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] tza
61zb

7]bza
652]aP61n1]2za

61n2]2za
71 f a

6 ,

]aza
650, ~1!

where n65(n6nb)/2 are the viscosity parameters, whic
account for dissipative effects, andf a

65( f a6ga) are Gauss-
ian random external forces, defined through the correlato

^ f a
6~xW ,t !&5^ f a

6~xW ,t ! f b
7~xW8,t8!&50,

^ f a
6~xW ,t ! f b

6~xW8,t8!&52d~ t2t8!@Dab
(1)~xW2xW8!

6Dab
(2)~xW2xW8!#

[d~ t2t8!Dab
6 ~xW2xW8!, ~2!

with

Dab
(1)~xW2xW8!5^ f a~xW ,t ! f b~xW8,t8!&

5^ga~xW ,t !gb~xW8,t8!&

5D1 exp~2uxW2xW8u2p/L1
2p!dab ,

Dab
(2)~xW2xW8!5^ f a~xW ,t !gb~xW8,t8!&

5D2 exp~2uxW2xW8u2p/L2
2p!dab . ~3!

Above,L1 andL2 are the length scales where energy pum
ing mechanisms are assumed to occur, andp.0 param-
etrizes the spatial decay of the force-force correlation fu
tions. We note that an extension of the subsequent analys
alternative definitions of the stochastic stirring terms yie
no further computational difficulties.

It is important to determine functionals of the velocity a
magnetic fields that may carry useful information on int
mittent behavior, to be revealed from the tails of probabil
distribution functions. A reasonable choice, as discusse
the introduction, is the circulation, defined in terms of E
sasser variables as

G65 R
c
zW6

•dxW . ~4!

The above integral is evaluated at timet50, assuming the
fluid evolution started att52`. The integration contourc is
taken to be the circumferencex21y25R2, with z50, ori-
ented in the counterclockwise direction.R is a length con-
tained in the inertial range, that is,h!R!L1 ,L2, whereh
gives the microscopic length scale, associated to domin
viscous effects. A further physical motivation to study t
statistics of Eq.~4! comes from phenomena usually observ
in the astrophysical context: due to Ampe`re-Maxwell’s law,
the formation of magnetic tubes is related to strong fluct
tions of velocity circulation. On the other hand, by the sa
token, any circulation of the magnetic field leads to the
istence of conduction/displacement currents, and poss
particle ‘‘jets,’’ which cross a surface bounded by the conto
c.
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The joint PDF for the circulation variables may be defin
as

r~G1,G2!5S 1

2p D 2E
2`

`

dl1E
2`

`

dl2

3exp~ il1G11 il2G2!Z~l1,l2!, ~5!

where the characteristic function is given by

Z~l1,l2!5K expF2 il1 R
c
zW1

•dxW2 il21 R
c
zW2

•dxW G L .

~6!

In the following computations, we will consider the an
lytical mappingl6→ il6, so that in the largel6 limit the
characteristic function will essentially pick up contribution
from large fluctuations of the circulation~it is not difficult to
prove this is so for PDFs that decay faster than any sim
exponential!.

The stochastic partial differential Eqs.~1! may be studied
as a field theoretical problem. The MSR formalism@11# al-
lows us to write the path-integral expression

Z~ il1,il2!5E Dẑ6DDz6DP6DQ6 exp~2S!, ~7!

where the MSR action is

S52 i E d3xW dt@ ẑa
1~] tza

11zb
2]bza

12n1]2za
2n2]2za

2

1]aP1!1 ẑa
2~] tza

21zb
1]bza

22n1]2za
22n2]2za

1

1]aP2!1Q1]aza
11Q1]aza

1#

1
1

2E dt d3xW d3xW8ẑa
1~xW ,t !Dab

1 ~xW2xW8!ẑb
1~xW8,t !

1
1

2E dt d3xW d3xW8ẑa
2~xW ,t !Dab

2 ~xW2xW8!ẑb
2~xW8,t !2l1G1

2l2G2. ~8!

A ‘‘telegraphic’’ proof of the above formulation is based o
the fact that

expF2
1

2E dt d3xW d3xW8ẑa
6~xW ,t !Dab

6 ~xW2xW8!ẑb
6~xW8,t !G

5 K expF i E dt d3xW ẑa
6~xW ,t ! f a

6~xW ,t !G L
f 6

, ~9!

where^(•••)& f stands for the average taken in the ensem
generated from different realizations of the stochastic forc
Integration over the ‘‘response fields’’ẑa

6 yields, thus, the
fluid equations~1!. The role of theP6 and Q6 is just to
assure that]aza

65]aẑa
650. In the continuum time formula-

tion, it is necessary to introduce a Jacobian term in Eq.~7!.
However, if time is regarded as a discrete variable~as we
2-2
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CIRCULATION-STRAIN SUM RULE IN STOCHASTIC . . . PHYSICAL REVIEW E65 036302
implicitly may do! there is no need for a Jacobian~it is
unity!, usually related to anticommuting Grassmann fie
@13#.

The MSR path-integral formulation may be used to
cover the Wyld perturbative diagrammatic expansion@14# of
velocity correlation functions. Since the diagrammatic e
pansion is developed in powers of the convection terms,
perturbative MSR-Wyld approach has been severely c
cized along the years for not taking into account singu
configurations of the velocity field, which are of fundamen
importance in turbulence. Nevertheless, one advantage o
MSR formalism is to address nonperturbative issues, fr
the knowledge of specific configurations of the flow that g
relevant contributions to the path-integral expression
Z( il1,il2). This is precisely the task of the saddle-po
method, meaningful in the limit of largel1 or l2.

From Eq.~8! we get the saddle-point equations

]aza
650,

]aẑa
650,

] tza
61zb

7]bza
62n1]2za

62n2]2za
71]aP6

52 i E d3xW8Dab
6 ~ uxW2xW8u!ẑb

6~xW8,t !,

] tẑa
62zb

7]bẑa
61 ẑa

6]bzb
71 ẑb

7]azb
71n1]2ẑa

61n2]2ẑa
7

1]aQ652 il6
dG6

dza
6 , ~10!

with

dG6

dza
6 5e3ba

xb

r'

d~r'2R!d~z!d~ t !, ~11!

wherer'5(x21y2)1/2.
A major source of difficulty here is a hampering ‘‘no-go

result that holds in the limit of vanishing viscosity: th
saddle-point action computed from solutions of Eq.~10! will
necessarily depend onl6 in a way incompatible with parity
symmetry. In fact, a simple check shows that saddle-p
equations are invariant under a set of scaling transformat
@7,9#, which imply that the saddle-point action has the ge
eral form S(0);l3/2, if one takesl6[l and n→0. This
dependence onl is exactly the one found in Burgers turbu
lence for the statistics of velocity differences@3,4#, which we
do not expect to reproduce, even qualitatively, the pa
symmetric PDFs of circulation in three dimensions. In ord
to find physically meaningful results, a solution of this pro
lem was advanced in Ref.@7#, resorting on an alternative
formulation of the MSR path integral, where the rate of t
strain tensor is used to parametrize an infinite family
saddle-point configurations. We will come back to this po
in Sec. IV.
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III. VISCOUS LIMIT OF CIRCULATION PDFS

It is interesting to study the viscous limit, where the co
vection terms are neglected in the fluid equations~in this
case the above no-go theorem does not apply!. Let us setp
51 in Eq. ~3!. As a result, we get an instructive examp
where the circulation PDF may be exactly found. The sadd
point equations~10! are now replaced by

] tza
61n1]2za

62n2]2za
752 i E d3xW8Dab

6 ~ uxW2xW8u!

3 ẑb
6~xW8,t !,

] tẑa
61n1]2ẑa

61n2]2ẑa
752 il6

dG6

dza
6 . ~12!

Taking Eqs.~8! and~12!, it is possible, with the help of som
partial integrations, to recast the saddle-point action in
simpler form

S~l,lb!52l R
c
vW •dxW2lb R

c
bW •dxW , ~13!

where we usedl65(l6lb)/2. It is also convenient to de
fine v̂a and b̂a throughẑa

65( v̂a6b̂a)/2. All we need to do,
therefore, is to find solutions for the velocity and magne
fields atz50 and t50, which we denote byva(xW',0) and
ba(xW',0), respectively, and to replace them in Eq.~13!.

We may rewrite Eqs.~12! as

~] t2n]2!va52 i E d3xW8Dab
(1)~ uxW2xW8u!v̂b~xW8,t !

2 i E d3xW8Dab
(2)~ uxW2xW8u!b̂b~xW8,t !,

~] t1n]2!v̂a52 ile3ba

xb

r'

d~r'2R!d~z!d~ t !,

~] t2nb]2!ba52 i E d3xW8Dab
(1)~ uxW2xW8u!b̂b~xW8,t !

2 i E d3xW8Dab
(2)~ uxW2xW8u!v̂b~xW8,t !,

~] t1nb]2!b̂a52 ilbe3ba

xb

r'

d~r'2R!d~z!d~ t !. ~14!

Applying (] t1n]2) on the first equation listed in Eq.~14!

and using also the equations forv̂a and b̂a , we will have

@] t
22n2~]2!2#va~xW ,t !52Fa~xW ,t !, ~15!

where
2-3
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Fa~xW ,t !52lE d3xW8Dab
(1)~ uxW2xW8u!e3gb

xg8

r'8
d~r'8 2R!

3d~z8!d~ t !2S ] t1n]2

] t1nb]2DlbE d3xW8Dab
(2)~ uxW2xW8u!

3e3gb

xg8

r'8
d~r'8 2R!d~z8!d~ t !

.
D1l2pR2

L1
2

e3baxb expS 2
xW2

L2D
1S ] t1n]2

] t1nb]2DD2lb2pR2

L1
2

e3baxb expS 2
xW2

L2
2D .

~16!

In Fourier space, Eq.~16! becomes

~v21n2k4!ṽa~kW ,v!5F̃a~kW !. ~17!

We obtain, thus,

va~xW ,t !5S 1

2p D 3E d3kW dv
exp~ ikW•xW1 ivt !

v21n2k4 F F̃a
(1)~kW !

kW2

1S iv2nkW2

iv2nbkW2D F̃a
(2)~kW !G , ~18!

with

F̃a
(1)~kW !52 i e3bakb

D1lp1/2R2

4
expS 2

L1
2kW2

4
D ,

F̃a
(2)~kW !52 i e3bakb

D2lbp1/2R2

4
expS 2

L2
2kW2

4
D . ~19!

Since we are interested to knowva(xW',0), it follows, from
Eq. ~18!,

va~xW',0!5E d3kW exp~ ikW'•xW'!
1

kW2
F F̃a

(1)~kW !

4pn
1

F̃a
(2)~kW !

2p~n1nb!
G .

~20!

Substituting Eq.~19! in Eq. ~20!, we find

va~xW',0!5
pR2

3 FD1l

2n
1

D2lb

~n1nb!Ge3baxb . ~21!

Similarly,

ba~xW',0!5
pR2

3 FD1lb

2nb
1

D2lb

~n1nb!Ge3baxb . ~22!

Thus, from Eqs.~13!, ~21!, and ~22!, we obtain the saddle
point action
03630
S~l,lb!52l2h12lb
2h22llbh3 , ~23!

where

h15
D1p2R4

3n
, h25

D1p2R4

3nb
, h35

4D2p2R4

3~n1nb!
.

~24!

Performing nowl→2 il and lb→2 ilb , to restore the
original definition of these parameters, we get

Z~l,lb!}exp~2l2h12lb
2h22llbh3!. ~25!

Defining

G5 R
c
vW •dxW , Gb5 R bW •dxW , ~26!

we obtain, from Eq.~6!, the Gaussian PDF

r~G,Gb!5S 1

4p2z D 1/2

expF2
h2G2

4z
2

h1Gb
2

4z
1

h3GGb

4z G ,
~27!

with

z5h1h22
h3

2

4
.0. ~28!

This condition may be stated as

A n

nb
1Anb

n
.

2D2

D1
. ~29!

It follows from Eqs.~2! and ~3! that the above inequality is
always satisfied@in fact, D1.D2 while the left-hand side of
Eq. ~29! is >2#. Considering, for instance,D250, which
gives h350, we find the factorized form of the circulatio
PDF,

r~G,Gb!5S 1

4p2h1h2
D 1/2

expF2
G2

4h1
2

Gb
2

4h2
G . ~30!

IV. INVISCID THEORY AND THE CIRCULATION-STRAIN
SUM RULE

Let us study now the inviscid theory, wheren,nb→0, a
limit associated to the fully developed turbulent regim
Since the radiusR of the contourc is much smaller thanL1
andL2, the scales where energy is injected into the syst
we are allowed to consider linear expressions for the fie
za

6 ,

za
6~xW ,t !5sab

6 ~ t !xb , ~31!

with the tensor of velocity derivatives satisfying to(asaa
6

50, due to the incompressibility constraint and the abse
2-4
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of magnetic monopoles. To work in the order of approxim
tion given by Eq.~31! we consider a quadratic form for th
pressure fieldsP6,

P65Aab
6 xaxb , ~32!

so that the gradient terms]aP6 exactly cancel in Eq.~10!,
any symmetric tensor acting on the spatial coordina
which would appear in the linear approximation. We are l
this way with equations that describe the time evolution
the antisymmetric part ofsab

6 ~related to the vorticity!

d

dt
sab

6 s̄52~s6ss7 s̄1s6 s̄s7s!ab

2 i E d3xW] [a,Db]g
6 ~ uxW u!ẑg

6~xW ,t !, ~33!

where we have defined

sab
6s5 1

2 ~sab
6 1sba

6 !, sab
6 s̄5 1

2 ~sab
6 2sba

6 !,

] [a,Db]g
6 ~ uxW u!5 1

2 @]aDbg
6 ~ uxW u!2]bDag

6 ~ uxW u!#. ~34!

Before proceeding, it is necessary to discuss the alte
tive definition of the saddle-point method that we will em
ploy. It has been suggested through numerical experimen
pure turbulence@6# that the rate of strain tensor,ss, does not
fluctuate so strongly as the vorticity. As it was shown in R
@7#, one may take advantage of this physical observation
overcome the no-go result commented in Sec. II. We w
assume that the characterization of symmetric and antis
metric degrees of freedom as slow and fast fluctuating v
ables, respectively, holds also in the magnetohydrodynam
realm, where similar vorticity filamentary structures are
well observed. Of course, experiments will decide ultimat
if this assumption is correct or not, but we provisiona
regard it as a working hypothesis that allows us to estab
meaningful predictions. Following Ref.@7# we may define
the MSR path integral for the characteristic functional as

Z~ il1,il2!5E Ds6sE Dẑ6Dz6DP6DQ6DQ̃6

3exp~2S̃!, ~35!

with s6s5s6s(x,y,t) and

S̃5S2
i

2E dx dy dtQ̃ab
1 ~x,y,t !@]azb

1uz501]bza
1uz50

22sab
1s~x,y,t !#2

i

2E dx dy dtQ̃ab
2 ~x,y,t !@]azb

2uz50

1]bza
2uz5022sab

2s~x,y,t !#. ~36!

The functional form~35! is obtained by putting

15E Ds6sDQ̃6 exp~S2S̃!, ~37!
03630
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in the integrand of Eq.~7!. The order of integrations is inter
changed, to write the integral oversab

6s as the last one to be
performed. These mathematical steps are motivated by
fact that the rate of the strain tensor plays the role of a q
sistatic background where vorticity fluctuations take pla
The central idea is then to apply the saddle-point method
the actionS̃, treatingsab

6s as external fixed fields. The saddle

point equations forẑa
6 , in Eq. ~10!, are replaced now by

] tẑa
62 ẑb

7]azb
71zb

7]bẑa
61 ẑb

6]bza
71n1]2ẑa

61n2]2ẑa
7

1]aQ61]b@d~z!Q̃ba
6 #1 il6

dG6

dza
6 50. ~38!

There are also two additional equations, associated to va
tions of the fieldsQ̃ab

6 ,

]azb
6uz501]bza

6uz5022sab
6s~x,y,t !50. ~39!

In order to seek for solutions of the saddle-point Eq
~10!, note they are invariant under rotations around thz
axis. The most general form of an axisymmetric tensor
velocity derivatives is given by

s6~ t !5F a6~ t ! v6~ t ! 0

2v6~ t ! a6~ t ! 0

0 0 22a6~ t !
G . ~40!

From now on, we will substitutesab
6s appearing in the above

relations by the axisymmetric expression~40!. This approxi-
mation amounts to the replacement

E Dsab
6s→E Da6~ t !, ~41!

in the path integral~35!. If one were able to integrate exactl
the expression forZ(l6), keepinga6(t) fixed, the circula-
tion PDF could be written as

r~G6!5E Da6r̄@a6#r@G6ua6#, ~42!

wherer̄@a6# is the probability density functional to get th
axisymmetric rate of the strain tensors defined bya6(t), and
r@G6ua6# is the conditional PDF to getG6, in the back-
grounda6(t). A natural question is how to reproduce th
kind of relation through the instanton approach. Is t
saddle-point action leading to an approximation f
r̄@a6#, r@G6ua6#, or both? We do not know how to answe
it a priori . We take a pragmatical point of view, where a
answer is found only after concrete computations are p
formed.

Using Eqs.~11!, ~31!, ~40!, and taking the limit of van-
ishing viscosity, we may write Eq.~38! as
2-5
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] tẑa
62sba

7 ẑb
71sbg

7 xg]bẑa
61]aQ61]b@d~z!Q̃ba

6 #

5 il6e3ab

xb

r'

d~r'2R!d~z!d~ t !. ~43!

We have now a closed set of coupled equations given by E
~33! and ~43!. A crucial observation is that the viscosit
terms in Eq.~38! have the opposite sign, if compared to t
ones appearing in the usual fluid equations. We have to
pose, therefore, in order to avoid an unbounded growing
the fieldsẑa

6(xW ,t), that ẑa
650, for t.0. In this way, Eq.~43!

leads to the boundary condition

ẑa
6~xW ,02!5 il6e3ba

xb

r'

d~r'2R!d~z!. ~44!

Also, we require thatẑa
6(xW ,t)→0 as t→2`. The equation

for ẑa
6(xW ,t) may be solved through the ansatz

ẑa
6~xW ,t !5e3baxbd~z! (

n50

`

cn
6~ t !r'

n21d (n)~r'2R!, ~45!

whered (n)(r'2R)5dnd(r'2R)/dr'
n . The problem of find-

ing ẑa
6 is mapped into the computation ofcn

6(t). The bound-
ary condition~44! reads now

c0
6~02!5 il6,

cn
6~02!50 for n.0. ~46!

We obtain, substituting Eq.~45! in Eq. ~43!,

d

dt
Cn5@A2~21n!B#Cn2BCn21 , ~47!

with C21[0 and

A~ t !5F 0 a2~ t !

a1~ t ! 0 G , B~ t !5Fa2~ t ! 0

0 a1~ t !
G ,

Cn~ t !5Fcn
1

cn
2G . ~48!

Furthermore, we getQ50, and

Q̃6~r' ,t !522v6~ t ! (
n50

`

cn
6~ t !E

0

r'

dj jnd (n)~j2R!.

~49!

An exact solution forCn(t) may be found in the case wher
@A,B#50. Matrices A and B commute only ifa1(t)
5a2(t)[a(t), which means that

]abb1]bba50,

]avb1]bva52a~ t !~dab23 d3ad3b!. ~50!

We are concerned, thus, with fluctuations of the circulat
variables in the presence of a vanishing rate of the st
03630
s.

-
f

n
in

tensor of the magnetic field. Even though the need of co
putational feasibility compels us to the study of thecondi-
tional PDF of circulation variablesin flow configurations
where Eq.~50! is verified, this restriction is not unfortunat
by no means: we will be able, below, to find well-define
predictions related to intermittent fluctuations of the veloc
or magnetic circulation.

The exact solution of Eq.~47! is given by

Cn~ t !5
i

n!
expF2E

0

t

dt8~2B2A!G~e2*0
t dt8B21!nl̃,

~51!

where

l̃5Fl1

l2G . ~52!

Taking into account Eq.~51!, the infinite series~45! may be
exactly summed up, to yield, in terms ofv̂a and b̂a ,

v̂a~xW ,t !5 ile3ba

xb

r'

dS r'2R expF E
0

t

dt8a~ t8!G D d~z!,

b̂a~xW ,t !5 ilbe3ba

xb

r'

expF22E
0

t

dt8a~ t8!G
3dS r'2R expF E

0

t

dt8a~ t8!G D d~z!. ~53!

To find the saddle-point actionS̃(0), it is necessary to ge
v6(t). Using Eq.~40!, we write Eqs.~33! as

d

dt
v61a~v11v2!52 i E d3xW] [1,D2]a

6 ~ uxW u!ẑa
6~xW ,t !.

~54!

Substituting the solutions forẑa
6(xW ,t) in Eq. ~54!, we obtain,

for t,0,

d

dt
v61a~v11v2!5F l 1

61 l 2
6expF22E

0

t

dt8a~ t8!G
3expF2pE

0

t

dt8a~ t8!G , ~55!

where

l 1
6522ppR2plS D1

L1
2p6

D2

L2
2pD ,

l 2
6572ppR2plbS D1

L1
2p6

D2

L2
2pD . ~56!

The idea now is to consider, in the context of a gradie
expansion, the effects of time independent configurati
a(t)5a. Therefore, we replace the path integration over
bitrary fieldsa(t) by an ordinary integration overa. Further-
2-6
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more, it turns out thatv6(t)→0 ast→2` only if a.0 and
p.1. Provided these conditions are satisfied, we obtain

v6~ t !5
~2p11!l 1

62 l 1
7

4ap~p11!
exp@2pat#

1
~2p21!l 2

62 l 2
7

4ap~p21!
exp@2~p21!at#. ~57!

The saddle-point action may be written as

S̃(0)52
1

2E2`

0

dtE d3xW d3xW8@ ẑa
1~xW ,t !Dab

1 ~xW2xW8!ẑb
1~xW8,t !

1 ẑa
2~xW ,t !Dab

2 ~xW2xW8!ẑb
2~xW8,t !#2l1 R

c
zW1(0)

•dxW

2l2 R
c
zW2(0)

•dxW . ~58!

Using Eqs. ~53! and ~55!, a straightforward computation
gives a quadratic form inl andlb for the actionS̃(0). With
the help of the notation introduced in the analysis of
viscous limit, Eq.~23!, we have now

h15
D1p f~p!

L1
2p~p11!

, h25
D1p f~p!

L1
2p~p21!

, h35
2D2f ~p!

L2
2p ,

~59!

where, in terms ofg functions,

f ~p!5
p2R2(p11)

a F22
G~2p11!

G~p11!G~p12!G . ~60!

The requirement of having a positive definite saddle-po
actionS̃(0) ~after the analytical mappingl6→ il6) leads to
f (p).0, that isp,2, and

1

p2.12FD1L2
2p

D2L1
2pG2

. ~61!

Therefore, our formalism is assumed to work in the invis
theory for 1,p,2, if the above condition is also verifie
~what happens, in particular, forD250). It is interesting to
observe thath2 diverges whenp→1, so that the PDF of the
magnetic circulation becomes very broad in that limit. Th
fact may be physically interpreted as due to a progres
decoupling of magnetic and velocity fields asp approaches
unity, in flow realizations where the magnetic strain va
ishes. The velocity field would then behave in the same fa
ion as in pure hydrodynamical turbulence, while the ma
netic circulation would diffuse in a strong way, under t
action of the external stochastic forces. On the other ha
for p large enough, higher wave numbers in the Four
transform of the force-force correlation functions cannot
neglected, and the saddle-point method, as based on sm
instanton solutions, breaks down.

Taking the definitions for theh ’s in Eq. ~59!, the condi-
tional PDF for the circulation variables,r(G,Gbua), may be
03630
e

t

e

-
h-
-

d,
r
e
oth

readily obtained from the expression previously defined
Eq. ~27!. We may write now, recalling Eq.~42!, the joint
circulation PDF as

r~G,Gb!5E
0

`

da r̄~a!r~G,Gbua!. ~62!

This is a sum rule that holds for asymptotically large valu
of G or Gb . It is important to keep in mind that the PDF
appearing in Eq.~62! are defined under the condition th
]abb1]bba50. Also, it is natural to expect that the un
known functionr̄(a) has a finite limit asa→0, so that we
are led to the algebraic decay at the PDF tails

r~G,Gb!;F D1p

L1
2p~p21!

G21
D1p

L1
2p~p11!

Gb
22

2D2

L2
2p GGbG23/2

,

~63!

a result that clearly signalizes the intermittent nature of c
culation fluctuations in turbulent magnetohydrodynamics.
particular, we may get from Eq.~63! the PDF tail for the
magnetic circulation as

r~Gb!5E dGr~G,Gb!;uGbu22. ~64!

An analogous behavior follows for the velocity circulatio
PDF. Since the magnetohydrodynamic system is most of
time around the state where the magnetic strain vanis
~that is, the mean magnetic strain is 0!, we conjecture that
Eq. ~64! is a general result, holding beyond a specific sel
tion of ensembles in the fully turbulent regime. It is wor
mentioning that similar computations for the case of pu
turbulence reveal ‘‘less intermittent’’ fluctuations, i.e., th
circulation PDF tailr(G);1/uGu3.

One could be puzzled by the fact that we have fou
algebraic decaying PDFs, exploring the largel6 limit,
which, as commented before, is related to PDFs with f
exponential decay. However, a crucial point in the analy
the instanton method becomes meaningful since it has b
used to get theconditional PDF r(G,Gbua), which has an
exact Gaussian shape. We stress that the algebraic dec
Eq. ~63! follows from the integration over the velocity strai
parametera in Eq. ~62!. Also, at this point it should be note
that the prediction of the stretched exponential tail for t
circulation PDF in pure turbulence, as previously discus
in Ref. @7#, is indeed likely to hold at anintermediaterange
where deviations from Gaussian statistics appear, and n
the extreme asymptotic region. To describe the intermed
range—the one so far observed in direct numeri
simulations—it is necessary to know in some detail the fo
of r̄(a), the strain PDF.

V. CONCLUSIONS

We studied the problem of stochastic magnetohydro
namics in the limits of large and small viscosity paramete
focusing on circulation variables, which are expected to yi
information on itermittent behavior in the latter situatio
2-7
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~turbulent regime!. From the technical point of view, th
computational framework was given by the application
the saddle-point method within the Martin-Siggia-Rose pa
integral formalism.

The instanton approach was straightforwardly applied
the viscous case, where we found a Gaussian form for
circulation PDF, as it should be. Regarding the inviscid lim
when turbulence surely comes into play, our investigation
particularly devoted to the properties of PDF tails. The fu
damental physical hypothesis is that for both velocity a
magnetic fields, the rate of the strain tensor behaves
quasistatic background where faster fluctuations of the a
symmetric part of the tensor of field derivatives~related to
the vorticity! occur. This motivates a definition of th
Martin-Siggia-Rose functional that explicitly takes into a
count fast and slow degrees of freedom. The saddle-p
method is then applied to the action defined in terms of
fast variables. Such a strategy gives a way out of the pr
lematic dimensional constraints imposed on the form of
pn

03630
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saddle-point action in the original path-integral formalis
We were able in this way to obtain a sum rule relation for t
statistics of the circulation variables, as well as a quantita
prediction for the algebraic decay of PDF tails.

Some mathematical simplifications were employed in
course of analysis, which basically fall into two classes:
ther based on the role of fast and slow variables or relate
the manipulation of exact solutions of the saddle-point eq
tions. Improvements on the latter aspect are likely to be
more interesting~and perhaps the more difficult to be a
tained!. The relevant open question is then how to implem
the instanton approach when exact saddle-point solutions
not available anymore, in order to compute joint PDFs
circulation variables in turbulent magnetohydrodynamics.
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