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Circulation-strain sum rule in stochastic magnetohydrodynamics
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We study probability density functiof®DF9 of the circulation of velocity and magnetic fields in magne-
tohydrodynamics, computed for a circular contour within inertial range scales. The analysis is based on the
instanton method as adapted to the Martin-Siggia-Rose field theory formalism. While in the viscous limit the
expected Gaussian behavior of fluctuations is indeed verified, the case of vanishing viscosity is not suitable of
a direct saddle-point treatment. To study the latter limit, we take into account fluctuations around quasistatic
background fields, which allows us to derive a sum rule relating PDFs of the circulation observables and the
rate of the strain tensor. A simple inspection of the sum rule definition leads straightforwardly to the algebraic
decayp(T")~1/T'? at the circulation PDF tails.
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[. INTRODUCTION elements of the formalism are set. We define the stochastic
fluid equations in terms of the Elsasser varialilegear com-
Probability distribution functionsPDF9 of quantities that  binations of velocity and magnetic fielddom which the
“measure” strong fluctuations in a turbulent fluid, such asMSR action and the associated saddle-point equations are
velocity differences in Burgers modgl—4] or the circula-  obtained. In Sec. lll, as a concrete introduction to the instan-
tion in three-dimensional incompressible flopis-7] are a  ton technique, we discuss the simpler problem of fluctuations
very promising tool in the study of the intermittency phe-in the viscous limit of the magnetohydrodynamical equa-
nomenon. While velocity differences are related to the existions, proving circulation is governed in this case by exact
tence of shock waves in the former case, the choice of cirGaussian statistics, as expected on physical grounds. In Sec.
culation as an observable worth to be investigated idV we consider the limit of vanishing viscosity. It is known
motivated by the appealing picture of turbulence in terms othat a direct application of the saddle-point method is fated
the complex evolution of vorticity filaments, suggested forto fail here, as implied from simple dimensional analysis
the first time through direct numerical simulations of the[7,9]. We circumvent this problem through the strategy de-
Navier-Stokes equatiori$]. vised in Ref.[7], which consists of “breaking” the path-
An early theoretical analysis of the circulation statisticsintegration measure into fast and slow degrees of freedom,
by Migdal [5], suggested, with the help of loop equation related, respectively, to the vorticity and the rate of the strain
methods, and on the grounds of the central limit theoremtensor. The characterization of fast and slow variables is the
that the PDF of the circulation, evaluated for a closed conbasic physical assumption of our method, as motivated by
tour contained in the inertial range, should display Gaussiathe numerical experimen{§] performed in the case of pure
tails. This was not confirmed in direct numerical simulations,turbulence. The outcome of our computations will be just a
where PDFs were seen to exhibit a stretched exponenti@um rule relating the statistics of circulation observables and
decay[6]. A further study of the problem by Takakura and the rate of the strain tensor. We find then asymptotic expres-
one of ug 7], through the instanton approadl, was able to  sions for the tails of the circulation PDFs, given by the alge-
reproduce observed results as well as to establish predictiogaic decay 1I' (the same for velocity and magnetic circu-
concerning the role of parity breaking external conditionslation), a result that indicates the existence of strong
which presently stand open for experimental verification.  intermittency effects in turbulent magnetohydrodynamics. In
Our aim here is to address similar questions in the probSec. V, we summarize our findings and discuss directions of
lem of turbulent magnetohydrodynamics, motivated by theurther research.
fact that a deeper understanding of the subject has been in
order for sometime, in face of the impressive amount of data
recorded in astrophysical observations, as sunspots and the [I. MSR FORMALISM AND THE SADDLE-POINT
dynamo effec{10]. More specifically, we will study the sta- EQUATIONS
tistics of circulation of velocity and magnetic fields in the ) ) ) ) ) _
laminar and turbulent regimes, by means of the Martin- Consider a three—dlmepsmnal fluid gescrlbed by velocity
Siggia-Rose formalism(MSR) [11]. The basic technical and magnetic fieldsp,(x,t) and b,(x,t), respectively,
framework is provided by the saddle-point method, wherewhich is stirred by large scale stochastic forces. It is possible
instantons and fluctuations around them are assumed t0 choose physical units so that velocity and magnetic fields
yield, respectively, leading and subleading contributions tdhave the same dimensions, and magnetohydrodynamical
the behavior of PDFs tails. equations are written in terms of Elsasser variakigs
This paper is organized as follows. In Sec. I, the basic=(v,*b,) [12], as
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oz, + ZZ ‘9BZ§ =—0,P +v, 0%z +v_ i’z +f, The joint PDF for the circulation variables may be defined

as
1 2 ro 0
— + -
277) [“av [ o

Xexp(iN TH+iN"T)ZINT A7), (5

942, =0, (1)
p(I",I'7)=

where v. =(vxw,)/2 are the viscosity parameters, which
account for dissipative effects, afig=(f ,*=g,) are Gauss-
ian random external forces, defined through the correlators

v e T2 where the characteristic function is given by
(fo ) =(f, (XD F(X",1))=0
o ’ “N\Na ’ B y — VU,

(fr(xDf5(x 1)) =28(t—t)[DH(x—x") Z(A+,>\‘)=<exr{—i>\+ i2+~di—i)\‘+ 3@02—-0& >
+D@(x—-x")] ©
et T (D2 In the following computations, we will consider the ana-
=a(t=t)Dp(x=x"), 2 lytical mapping\*—i\™*, so that in the largé&~ limit the
with characteristic function will essentially pick up contributions
from large fluctuations of the circulatidit is not difficult to
) oo > > . prove this is so for PDFs that decay faster than any simple
Daﬁ(x X ) <fa(xlt)fﬁ(x !t )> eXponentia)l.
=(g (X t)g (x’ t)) The stochastic partial differential Eq4) may be studied
aA SRS as a field theoretical problem. The MSR formali$ii] al-
=D1exp(—|>2—>2’|2p/L§p)5aB, lows us to write the path-integral expression
DEUX—X")=(f (X,1)g(X',t")) Z(m,ir):f Dz*DDz*DP*DQ” exp—9), (7)

_ Clwv—~'l2p/ 2P
Do expl(— [X=X'[PIL5P) 8. ) where the MSR action is

Above, L, andL, are the length scales where energy pump-
ing mechanisms are assumed to occur, ard0 param- S:—iJ d3§dt[22((9tz;+zg&ﬁzZ—v+(922;v,&22;
etrizes the spatial decay of the force-force correlation func-
tions. We note that an extension of the subsequent analysis to
alternative definitions of the stochastic stirring terms yields
no further computational difficulties. +3,P)+Q 0,z +Q 19,2 ]
It is important to determine functionals of the velocity and
magnetic fields that may carry useful information on inter-
mittent behavior, to be revealed from the tails of probability
distribution functions. A reasonable choice, as discussed in
the introduction, is the circulation, defined in terms of El-
sasser variables as

+ 0P+ 2, (032, + 25 g2, — v IP2, —v_0%Z

1 e, o e a -
+§f dt d® d®’z (X,)D 5(x—X")Z5 (X',1)

1 e e n = e e s
+§J dt d® d®’z,, (X,t)D 5(X—X")Z5 (X" ,) =\ T+

o -\T . (8)
r-= igzi-dx. (4)
¢ A “telegraphic” proof of the above formulation is based on

The above integral is evaluated at tire 0, assuming the the fact that

fluid evolution started at= —o0. The integration contour is
taken to be the circumfereno€+y?=R?, with z=0, ori- exp{
ented in the counterclockwise directioR.is a length con-

tained in the inertial range, that i<R<L4,L,, wherey . .
gives the microscopic length scale, associated to dominant =<exﬁ{if dt d®xz;, (x,t)f; (x.t)
viscous effects. A further physical motivation to study the

statistics of Eq(4) comes from phenomena usually observedwhere<(_ .)); stands for the average taken in the ensemble

Eér}gr?nsg%%hz?'fna;gcr?;;?iﬂbdeuseiéorggl'[ggvgxgzlnsg lﬁnvétuagenerated from different realizations of the stochastic forces.

tions of velocity circulation. On the other hand, by the samentégration over the “response fieldZ, yields, thus, the
token, any circulation of the magnetic field leads to the exfluid equations(1). The role of theP~ and Q™ is just to
istence of conduction/displacement currents, and possiblassure tha#,z, = d,z, =0. In the continuum time formula-
particle “jets,” which cross a surface bounded by the contourtion, it is necessary to introduce a Jacobian term in (£q.
C. However, if time is regarded as a discrete variafgle we

1 - > A > + -> —’, ~ 4+ —),
—Ef dt d® d®’z;, (x,1)D 5(x—Xx")Z5 (X',1)

> , (€)
fi
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implicitly may do) there is no need for a Jacobidit is [ll. VISCOUS LIMIT OF CIRCULATION PDFS
unity), usually related to anticommuting Grassmann fields
[13]. It is interesting to study the viscous limit, where the con-

The MSR path-integral formulation may be used to re-vection terms are neglected in the fluid equatigims this
cover the Wyld perturbative diagrammatic expandibé] of  case the above no-go theorem does not dpjhlgt us setp
velocity correlation functions. Since the diagrammatic ex-=1 in Eqg. (3). As a result, we get an instructive example
pansion is developed in powers of the convection terms, thavhere the circulation PDF may be exactly found. The saddle-
perturbative MSR-Wyld approach has been severely critipoint equationg10) are now replaced by
cized along the years for not taking into account singular

configurations of the velocity field, which are of fundamental . - ) - . g e -
importance in turbulence. Nevertheless, one advantage of the 2, +v49°Z, —v_9°Z, = —i f d*x'D4([x=x"])
MSR formalism is to address nonperturbative issues, from
the knowledge of specific configurations of the flow that give X Qg()? 1),
relevant contributions to the path-integral expression for
Z(ix*',iNT). This is precisely the task of the saddle-point +
method, meaningful in the limit of large™ or A . 3&5 + ,,+(922§ + V_(922§ =—iNT— (12)
From Eq.(8) we get the saddle-point equations 6z,
9.7°=0 Taking Eqs(8) and(12), it is possible, with the help of some
“re 7 partial integrations, to recast the saddle-point action in the
simpler form
d.2,=0,
L . _ ) S(MAp)=—\ f&-di—xbjgﬁ-di, (13)
IiZy + 25052, — v, %2, —v_0%Z,+ 3P c c

_ _if dg)—(),Diﬁ(bz_)z,D%;(;,'t)! whe[e we l{sedi—()\:_r}b)/?. Itjs also convenient to de-
finev, andb,, throughz, =(v,*b,)/2. All we need to do,
therefore, is to find solutions for the velocity and magnetic

02y = 25052y +2, 0525 +250,25+ v, 9°2, +v_0°Z, fields atz=0 andt=0, which we denote by ,(x,,0) and
ST= ba(i,O), respectively, and to replace them in E3).
+9,Q%=—i\" 5 (10) We may rewrite Eqs(12) as
it (9= v, =1 [ R DER—' )i 50
or= X —i | d®'D@)(|x—x"|)bg(x' t
= e LA ~RIODAD, (D [ o % 0.
oz, r,
- ) X
wherer | =(x?+y?)2 (dy+vd*)v = —|)\63,3ar—35(ri—R)5(z)5(t),
1

A major source of difficulty here is a hampering “no-go”
result that holds in the limit of vanishing viscosity: the
saddle-point action computed from solutions of Eif) will 2\l — i 32 W) e VR (o
necessarily depend on® in a way incompatible with parity (9= 0 )be= If XD ea(x=xDbs0x",0
symmetry. In fact, a simple check shows that saddle-point
equations are invariant under a set of scaling transformations i f d3x’ folg(bz_;' |){,B()Zf 1),
[7,9], which imply that the saddle-point action has the gen-
eral form S(O~)\3%2 if one takes\*=\ and v—0. This
dependence oR is exactly the one found in Burgers turbu-
lence for the statistics of velocity differencgg4], which we
do not expect to reproduce, even qualitatively, the parity
symmetric PDFs of circulation in three dimensions. In orderappiying (g,+ v32) on the first equation listed in Eq14)
to find physically meaningful results, a solution of this prob-
lem was advanced in Ref7], resorting on an alternative
formulation of the MSR path integral, where the rate of the T - -
strain tensor is used to parametrize an infinite family of [9f = vo(07) Ju (X, ) = —F 4(X,1), (15
saddle-point configurations. We will come back to this point
in Sec. IV. where

(0t vb&2)6a= _i)\bfgﬁa:_(_ﬁ 8(r, —R)8(2)6(1). (14)
L

and using also the equations for andb,,, we will have
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R - I X

F (X t)= —xf d*' D{A(IX—X'|)€3,5—8(r| —R)
rL

O+ vo?

X 5(2’)5('1) - W

Jro [ a5 pEH%-71)

X/
X 6375r—,75(ri—R)§(2')5(t)

1

DA 27R? X2
=7 €3paXp P T2

L3
O+ 132 \ Dok 2 TR2 X2
e Vbaz) 2 €38aXp exp( - fg) :
(16)
In Fourier space, Eq16) becomes
(024 12k v (K, ) =F ,(K). (17)
We obtain, thus,
va(i,t)=<%)3f dsﬁdwexpiizl(_l._):z'—|(i4wt) ngz(k)
P 2
+(%)?&2><E>], 18

with

e D\ 7Y2R2 L2k2
Fg”(k)z—iesﬁakﬁl—ex -1,

4
L2k?
exp — T . (19)

Since we are interested to knaw,(x, ,0), it follows, from
Eq. (18),

. D2)\b771/2R2
—1 ES.BQk.BT

FL®)

4y

FO®)
2m(v+vy)
(20)

1
K2

va(>_(l,0)=f d3k explik, -X,)

Substituting Eq(19) in Eq. (20), we find

PHYSICAL REVIEW E55 036302

SN Np) == N1 N2 Mg 73, (23
where
_Dy7*R? _Dy7*R? _4D,m°R*
M=y T, BT3¢
(24)

Performing now\— —i\ and \,— —i\,, to restore the
original definition of these parameters, we get

ZON ) exp(— N2 = Ngma—Mp7s).  (25)
Defining
I'= j@&-di, Ip= jgﬁ-d;(, (26)
C
we obtain, from Eq(6), the Gaussian PDF
1\ 772F2 ﬂlrg nsl'Ty
(27
with
UG
{=mmn2——5>0. (28)

This condition may be stated as

v vy 2D,
—+\/—>—. (29
Vp v D

It follows from Egs.(2) and(3) that the above inequality is
always satisfiedin fact, D;>D, while the left-hand side of
Eqg. (29 is =2]. Considering, for instance),=0, which
gives 73=0, we find the factorized form of the circulation
PDF,

1/2 2 2
ot o 2] o
, = exp ——-——-|.
P b 4menim; dny 4An

IV. INVISCID THEORY AND THE CIRCULATION-STRAIN
SUM RULE

Let us study now the inviscid theory, wherger,—0, a

- 7R?[ D\ Do\p limit associated to the fully developed turbulent regime.
Va(XL,0)= 5~ (vt vg) | S2BaXe (21)  Since the radiuf of the contourc is much smaller that ;
b andL,, the scales where energy is injected into the system,
Similarly, we are allowed to consider linear expressions for the fields
z,,
- 7TR2 Dl)\b DZ)\b
ba(x,,00=—3 2 | (vt vy | €38%E (22) ZE (X, ) =040, (31)

with the tensor of velocity derivatives satisfying B,0,,
=0, due to the incompressibility constraint and the absence

Thus, from Eqs(13), (21), and(22), we obtain the saddle-
point action
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of magnetic monopoles. To work in the order of approxima-in the integrand of Eq(7). The order of integrations is inter-
tion given by Eq.(31) we consider a quadratic form for the changed, to write the integral oveﬁﬁS as the last one to be
pressure field® ™, performed. These mathematical steps are motivated by the
. fact that the rate of the strain tensor plays the role of a qua-
P==A,sXXg, (32)  sistatic background where vorticity fluctuations take place.
The central idea is then to apply the saddle-point method to

. . X : the actionS, treatingcrig as external fixed fields. The saddle-
any symmetric tensor acting on the spatial coordinates, @

which would appear in the linear approximation. We are leftP0int equations foe, , in Eq. (10), are replaced now by
this way with equations that describe the time evolution of

so that the gradient terms,P* exactly cancel in Eq(10),

the antisymmetric part Orﬁ':fﬁ (related to the vorticity oz, — 2; aaz; + z; ,962; + EE gz, + v, %z +v_ 0%z
d .5 ss 35, +s Ts s ce o O
aogﬂz—((r* T+ 00T 0 +3,Q7+ 5[ 8(2)Qp,] +iN ?=0. (38
o
- if d%Xd},,D g1,(IX])Z;, (X,1), (33)  There are also two additional equations, associated to varia-

tions of the fieldsQ,
where we have defined
vy . N . N 0aZpl7=0t 352y ) 2-0— 20, 5(X,y,1) =0. (39
‘Taﬁ—i(o'aﬁ+0'ﬁa)a O'aﬁ—i(ﬂaﬁ_‘fﬁa),
. . . In order to seek for solutions of the saddle-point Egs.
Ia.D (XN =3[0.D5,(IX)=35D5(IX)]. (34  (10), note they are invariant under rotations around the
axis. The most general form of an axisymmetric tensor of
Before proceeding, it is necessary to discuss the alternase|ocity derivatives is given by
tive definition of the saddle-point method that we will em-
ploy. It has been suggested through numerical experiments of at(t)  w*(t) 0
pure turbulencé6] that the rate of strain tensar?, does not
fluctuate so strongly as the vorticity. As it was shown in Ref. ot (=] —o (1) a“(t) 0 . (40)
[7], one may take advantage of this physical observation to 0 0 —2a*(t)
overcome the no-go result commented in Sec. II. We will

assume that the characterization of symmetric and antisyn]from now on. we will substituter:; appearing in the above
’ [23

metric degrees of freedom as slow and fast fluctuating vari- . . . . . .
ables, respectively, holds also in the magnetohydrodynamicé?la.tlons by the axisymmetric expressi@0). This approxi-
realm, where similar vorticity filamentary structures are agnation amounts to the replacement
well observed. Of course, experiments will decide ultimately
if this assumption is correct or not, but we provisionally f DS JD (1)
regard it as a working hypothesis that allows us to establish Tap™ a(v,

meaningful predictions. Following Ref7] we may define
the MSR path integral for the characteristic functional as  j the path integra(35). If one were able to integrate exactly
the expression foZ(\*), keepinga™(t) fixed, the circula-
Z(i)\*,i)C)=J DUtSJ Dz*Dz*DP*DQ*DQ"* tion PDF could be written as

(41)

xexp =), 39 p(ri>=f Da*p[a*1p[*[a*], (42
with o*5=o*5(x,y,t) and

i wherep[a™] is the probability density functional to get the
S=5- Ef dx dy dtQs(X,y,0[3a25 |0+ dpzs] -0 axisymmetric rate of the strain tensors definedabyt), and
p['*|a*] is the conditional PDF to gef*, in the back-
i 3 grounda*(t). A natural question is how to reproduce this
—ZO'I;(X,y,t)]—Ef dx dy dtqﬁ(x,y,t)[&azglzzo kind of relation through the instanton approach. Is the
saddle-point action leading to an approximation for

+0pZ, | 7=0— 20 5(X,y,1)]. (36)  pla®], p[I'*|a*], or both? We do not know how to answer
it a priori. We take a pragmatical point of view, where an
The functional form(35) is obtained by putting answer is found only after concrete computations are per-
formed.
_ g R = Using Egs.(11), (31), (40), and taking the limit of van-
1= f Do="DQ™ exp(S—$), (37 ishing viscosity, we may write Eq38) as

036302-5



L. MORICONI AND F. A. S. NOBRE PHYSICAL REVIEW E55 036302

e ot + X+ tensor of the magnetic field. Even though the need of com-
K2 = Opap + 05 Xy0p2u T IQH Il 5(2)Qp0] putational feasibility compels us to the study of thendi-
. Xg tional PDF of circulation variablesin flow configurations
=N €357~ 0(r . —R)8(2) (V). (43 where Eq.(50) is verified, this restriction is not unfortunate
* by no means: we will be able, below, to find well-defined
We have now a closed set of coupled equations given by Eggredictions related to intermittent fluctuations of the velocity
(33) and (43). A crucial observation is that the viscosity or magnetic circulation.
terms in Eq.(38) have the opposite sign, if compared to the The exact solution of Eq47) is given by
ones appearing in the usual fluid equations. We have to im- )
pose, therefore, in order to avoid an unbounded growing of Co(t)= r:jexﬁ{— Jtdt’(ZB—A)

! ) N (e—fgdt/B_l)nX’
the fieldsz,, (x,t), thatz, =0, fort>0. In this way, Eq(43) 0

leads to the boundary condition (51
.t - Xg where
Z,(X,07)=iN" €35, 6(r, —R)8(2). (44)
rl _ )\+
I A= . (52
Also, we require that, (x,t)—0 ast— —o°. The equation A

for z, (x,t) may be solved through the ansatz Taking into account Eq51), the infinite serieg45) may be

w exactly summed up, to yield, in terms of, andb,,,
Z, (x,t)= €3BaXﬁ5(Z)nZO e (Hr16™M(r, —R), (45

A~ > X t
va(x,t)=i)\egﬁar—ﬁb‘( rl—Rexp{J’ dt’a(t’) )5(2),
wheres™(r, —R)=d"s(r, —R)/dr" . The problem of find- S 0
ing z_ is mapped into the computation of (t). The bound- o X ¢
ary condition(44) reads now ba(x,t):i)\begﬁar—ﬁex;{ —zf dt'a(t’)
1 0
Co (07)=iNT, .
. X8l r, —Rex Jdt’a(t’) )5(2). (53
cX(07)=0 for n>0. (46) . p[ 0
We obtain, substituting Eq45) in Eq. (43), To find the saddle-point actioB?, it is necessary to get
d o™= (t). Using Eq.(40), we write Eqs(33) as
i Cn=[A=(2+mB]C,—BCy-y, (47) d . o
| awi+a(w++w‘)=—if dxdp1, D3.(1X)) Z (X, 1).
N t B t O . . . At . .
A(t)={ R a )}, B(t)= a (1) N Substituting the solutions far, (x,t) in Eg. (54), we obtain,
a'(t) 0 0 a'(v for t<O,
C: d - t
C,(H)=| _|. (48 —ow talo +o7)=|1]+l5ex —Zf dt’a(t’)
(o dt 0
= t
Furthermore, we geD=0, and Xexr{ZpJ dt'act’) |, (55)
o0 0
~ M
+ - _ + * no(n) e
O 0=-20" (0T ci(0 [ desreeR.
(49)
_ 1 2
An exact solution foiC,(t) may be found in the case where Iy = —277pR2">\(L—§pi L_g”) ,
[A,B]=0. Matrices A and B commute only ifa*(t)
=a (t)=a(t), which means that D. D
l5= IprRZp)\b<Tli%). (56)
3.+ dgb,=0, LiPLgP
9o g+ g0 o=2a(1) (8,5~ 3 83,53p). (500  The idea now is to consider, in the context of a gradient

expansion, the effects of time independent configurations
We are concerned, thus, with fluctuations of the circulatiora(t) =a. Therefore, we replace the path integration over ar-
variables in the presence of a vanishing rate of the straibitrary fieldsa(t) by an ordinary integration ovex. Further-
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more, it turns out thad = (t)—0 ast— — only if a>0 and
p>1. Provided these conditions are satisfied, we obtain

(2p+1)lr 17
Wexr{Zpaﬂ

(2p-1)l3 - 15
WGXQZ([)— 1)at]. (57

o ()=

The saddle-point action may be written as
2(0) 10 35 A3 TS+ /o + o oINSt
S =—3 ﬂodt d°x d*x'[z, (X,1)D ,5(X—=X")Z5 (X' 1)

+2,(X,1)D 4(Xx—X)Z5 (X' )]\ " 35 7+(0). gx

c

-\~ ﬁ;g—(oxd;_ (58
C

Using Egs.(53) and (55), a straightforward computation

gives a quadratic form in andX,, for the actionS®). With

PHYSICAL REVIEW 65 036302

readily obtained from the expression previously defined in
Eq. (27). We may write now, recalling Eqg42), the joint
circulation PDF as

p(T'\T)= f;daﬁamr,rbla). 62

This is a sum rule that holds for asymptotically large values
of I' or I'y. It is important to keep in mind that the PDFs
appearing in Eq(62) are defined under the condition that
d.bptdgb,=0. Also, it is natural to expect that the un-

known functionp(a) has a finite limit asa—0, so that we
are led to the algebraic decay at the PDF tails

—3/2
ITy|

(63

Dip 2
LP(p—1)

Dip 1ﬂ2_2D2
LZ?(p+1) ° L2P

P(F'Fb)"“[

a result that clearly signalizes the intermittent nature of cir-
culation fluctuations in turbulent magnetohydrodynamics. In
particular, we may get from Eq63) the PDF tail for the
magnetic circulation as

the help of the notation introduced in the analysis of the

viscous limit, Eq.(23), we have now

_ Dipf(p) _ Di1pf(p) _2D>f(p)
TRy PRy TP
(59
where, in terms ofy functions,
7R I'(2p+1)
fp)=—3 TTprnrpra) ©9

p(rb>=f dCp(T,T)~ |y 2 (64

An analogous behavior follows for the velocity circulation
PDF. Since the magnetohydrodynamic system is most of the
time around the state where the magnetic strain vanishes
(that is, the mean magnetic strain i§ @e conjecture that
Eq. (64) is a general result, holding beyond a specific selec-
tion of ensembles in the fully turbulent regime. It is worth
mentioning that similar computations for the case of pure
turbulence reveal “less intermittent” fluctuations, i.e., the

The requirement of having a positive definite saddle-pointjrcylation PDE tailp(I')~1/T 2.

actionS©) (after the analytical mapping™—ix*) leads to
f(p)>0, that isp<2, and

1 L D,L3P]? 61
> —
p? D,L3P (6)

One could be puzzled by the fact that we have found
algebraic decaying PDFs, exploring the largé limit,
which, as commented before, is related to PDFs with fast
exponential decay. However, a crucial point in the analysis,
the instanton method becomes meaningful since it has been
used to get theonditional PDF p(T",I'y|a), which has an

Therefore, our formalism is assumed to work in the inviscidexact Gaussian shape. We stress that the algebraic decay in
theory for 1<p<2, if the above condition is also verified Eq. (63) follows from the integration over the velocity strain

(what happens, in particular, f@,=0). It is interesting to

parametean in Eq. (62). Also, at this point it should be noted

observe thatp, diverges whermp— 1, so that the PDF of the that the prediction of the stretched exponential tail for the
magnetic circulation becomes very broad in that limit. Thiscirculation PDF in pure turbulence, as previously discussed
fact may be physically interpreted as due to a progressivén Ref.[7], is indeed likely to hold at amtermediaterange
decoupling of magnetic and velocity fields psapproaches where deviations from Gaussian statistics appear, and not at
unity, in flow realizations where the magnetic strain van-the extreme asymptotic region. To describe the intermediate
ishes. The velocity field would then behave in the same fashrange—the one so far observed in direct numerical
ion as in pure hydrodynamical turbulence, while the mag-simulations—it is necessary to know in some detail the form
netic circulation would diffuse in a strong way, under the of p(a), the strain PDF.

action of the external stochastic forces. On the other hand,
for p large enough, higher wave numbers in the Fourier
transform of the force-force correlation functions cannot be
neglected, and the saddle-point method, as based on smoothWe studied the problem of stochastic magnetohydrody-
instanton solutions, breaks down. namics in the limits of large and small viscosity parameters,

V. CONCLUSIONS

Taking the definitions for thep’s in Eq. (59), the condi-
tional PDF for the circulation variableg(I",I',|a), may be

focusing on circulation variables, which are expected to yield
information on itermittent behavior in the latter situation
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(turbulent regimg From the technical point of view, the saddle-point action in the original path-integral formalism.
computational framework was given by the application ofWe were able in this way to obtain a sum rule relation for the
the saddle-point method within the Martin-Siggia-Rose path-statistics of the circulation variables, as well as a quantitative
integral formalism. prediction for the algebraic decay of PDF tails.

The instanton approach was straightforwardly applied to  Some mathematical simplifications were employed in the
the viscous case, where we found a Gaussian form for thgoyrse of analysis, which basically fall into two classes: ei-
circulation PDF, as it should be. Regarding the inviscid limit, ther based on the role of fast and slow variables or related to
when turbulence surely comes into play, our investigation ishe manipulation of exact solutions of the saddle-point equa-
particularly devoted to the properties of PDF tails. The fun-tions. Improvements on the latter aspect are likely to be the
damental physical hypothesis is that for both velocity andnore interestingland perhaps the more difficult to be at-
magnetic fields, the rate of the strain tensor behaves as tgined. The relevant open question is then how to implement
quasistatic background where faster fluctuations of the antihe instanton approach when exact saddle-point solutions are
symmetric part of the tensor of field derivativéelated to ot available anymore, in order to compute joint PDFs of

the vorticity occur. This motivates a definition of the circulation variables in turbulent magnetohydrodynamics.
Martin-Siggia-Rose functional that explicitly takes into ac-

count fast and slow degrees of freedom. The saddle-point
method is then applied to the action defined in terms of the
fast variables. Such a strategy gives a way out of the prob-
lematic dimensional constraints imposed on the form of the This work was partially supported by CAPES and CNPq.
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